面试问题记录 八 - ZooKeeper
ZooKeeper 是什么
ZooKeeper 是一个开源的分布式协调服务。它是一个为分布式应用提供一致性服务的软件,分布式应用程序可以基于 Zookeeper 实现诸如数据发布/订阅、负载均衡、命名服务、分布式协调/通知、集群管理、Master 选举、分布式锁和分布式队列等功能。
ZooKeeper 的目标就是封装好复杂易出错的关键服务,将简单易用的接口和性能高效、功能稳定的系统提供给用户。
Zookeeper 保证了如下分布式一致性特性:
顺序一致性
原子性
单一视图
可靠性
实时性(最终一致性)
客户端的读请求可以被集群中的任意一台机器处理,如果读请求在节点上注册了监听器,这个监听器也是由所连接的 zookeeper 机器来处理。对于写请求,这些请求会同时发给其他 zookeeper 机器并且达成一致后,请求才会返回成功。因此,随着 zookeeper 的集群机器增多,读请求的吞吐会提高但是写请求的吞吐会下降。
有序性是 zookeeper 中非常重要的一个特性,所有的更新都是全局有序的,每个更新都有一个唯一的时间戳,这个时间戳称为 zxid(Zookeeper Transaction Id)。而读请求只会相对于更新有序,也就是读请求的返回结果中会带有这个zookeeper 最新的 zxid。
ZooKeeper 提供了什么
- 文件系统
- 通知机制
Zookeeper 文件系统
Zookeeper 提供一个多层级的节点命名空间(节点称为 znode)。与文件系统不同的是,这些节点都可以设置关联的数据,而文件系统中只有文件节点可以存放数据而目录节点不行。
Zookeeper 为了保证高吞吐和低延迟,在内存中维护了这个树状的目录结构,这种特性使得 Zookeeper 不能用于存放大量的数据,每个节点的存放数据上限为1M。
Zookeeper 怎么保证主从节点的状态同步
Zookeeper 的核心是原子广播机制,这个机制保证了各个 server 之间的同步。实现这个机制的协议叫做 Zab 协议。Zab 协议有两种模式,它们分别是恢复模式和广播模式。
恢复模式
当服务启动或者在领导者崩溃后,Zab就进入了恢复模式,当领导者被选举出来,且大多数 server 完成了和 leader 的状态同步以后,恢复模式就结束了。状态同步保证了 leader 和 server 具有相同的系统状态。广播模式
一旦 leader 已经和多数的 follower 进行了状态同步后,它就可以开始广播消息了,即进入广播状态。这时候当一个 server 加入 ZooKeeper 服务中,它会在恢复模式下启动,发现 leader,并和 leader 进行状态同步。待到同步结束,它也参与消息广播。ZooKeeper 服务一直维持在 Broadcast 状态,直到 leader 崩溃了或者 leader 失去了大部分的 followers 支持。
ZooKeeper 节点类型
ZooKeeper 节点是有生命周期的,这取决于节点的类型。在 ZooKeeper 中,节点类型可以分为持久节点(PERSISTENT )、临时节点(EPHEMERAL),以及时序节点(SEQUENTIAL ),具体在节点创建过程中,一般是组合使用,可以生成以下 4 种节点类型。
- 持久节点
是指在节点创建后,就一直存在,直到有删除操作来主动清除这个节点——不会因为创建该节点的客户端会话失效而消失。
- 持久顺序节点
这类节点的基本特性和上面的节点类型是一致的。额外的特性是,在ZK中,每个父节点会为他的第一级子节点维护一份时序,会记录每个子节点创建的先后顺序。基于这个特性,在创建子节点的时候,可以设置这个属性,那么在创建节点过程中,ZK会自动为给定节点名加上一个数字后缀,作为新的节点名。这个数字后缀的范围是整型的最大值。
- 临时节点
和持久节点不同的是,临时节点的生命周期和客户端会话绑定。也就是说,如果客户端会话失效,那么这个节点就会自动被清除掉。注意,这里提到的是会话失效,而非连接断开。另外,在临时节点下面不能创建子节点。
- 临时顺序节点
可以用来实现分布式锁
客户端调用create()方法创建名为“locknode/guid-lock-”的节点,需要注意的是,这里节点的创建类型需要设置为EPHEMERAL_SEQUENTIAL。
客户端调用getChildren(“_locknode_”)方法来获取所有已经创建的子节点,注意,这里不注册任何Watcher。
客户端获取到所有子节点path之后,如果发现自己在步骤1中创建的节点序号最小,那么就认为这个客户端获得了锁。
如果在步骤3中发现自己并非所有子节点中最小的,说明自己还没有获取到锁。此时客户端需要找到比自己小的那个节点,然后对其调用exist()方法,同时注册事件监听。
之后当这个被关注的节点被移除了,客户端会收到相应的通知。这个时候客户端需要再次调用getChildren(“_locknode_”)方法来获取所有已经创建的子节点,确保自己确实是最小的节点了,然后进入步骤3。
Zookeeper Watcher 机制 – 数据变更通知
Zookeeper 允许客户端向服务端的某个 Znode 注册一个 Watcher 监听,当服务端的一些指定事件触发了这个 Watcher,服务端会向指定客户端发送一个事件通知来实现分布式的通知功能,然后客户端根据 Watcher 通知状态和事件类型做出业务上的改变。
工作机制:
客户端注册 watcher
服务端处理 watcher
客户端回调 watcher
Watcher 特性总结
一次性
无论是服务端还是客户端,一旦一个 Watcher 被 触 发 ,Zookeeper 都会将其从相应的存储中移除。这样的设计有效的减轻了服务端的压力,不然对于更新非常频繁的节点,服务端会不断的向客户端发送事件通知,无论对于网络还是服务端的压力都非常大。
客户端串行执行
客户端 Watcher 回调的过程是一个串行同步的过程。
轻量
Watcher 通知非常简单,只会告诉客户端发生了事件,而不会说明事件的具体内容。
客户端向服务端注册 Watcher 的时候,并不会把客户端真实的 Watcher 对象实体传递到服务端,仅仅是在客户端请求中使用 boolean 类型属性进行了标记。
watcher event 异步发送 watcher 的通知事件从 server 发送到 client 是异步的,这就存在一个问题,不同的客户端和服务器之间通过 socket 进行通信,由于网络延迟或其他因素导致客户端在不通的时刻监听到事件,由于 Zookeeper 本身提供了 ordering guarantee,即客户端监听事件后,才会感知它所监视 znode发生了变化。所以我们使用 Zookeeper 不能期望能够监控到节点每次的变化。Zookeeper 只能保证最终的一致性,而无法保证强一致性。
注册 watcher getData、exists、getChildren
触发 watcher create、delete、setData
当一个客户端连接到一个新的服务器上时,watch 将会被以任意会话事件触发。当与一个服务器失去连接的时候,是无法接收到 watch 的。而当 client 重新连接时,如果需要的话,所有先前注册过的 watch,都会被重新注册。通常这是完全透明的。只有在一个特殊情况下,watch 可能会丢失:对于一个未创建的 znode的 exist watch,如果在客户端断开连接期间被创建了,并且随后在客户端连接上之前又删除了,这种情况下,这个 watch 事件可能会被丢失。
客户端注册 Watcher 实现
- 调用 getData()/getChildren()/exist()三个 API,传入 Watcher 对象
- 标记请求 request,封装 Watcher 到 WatchRegistration
- 封装成 Packet 对象,发服务端发送 request
- 收到服务端响应后,将 Watcher 注册到 ZKWatcherManager 中进行管理
- 请求返回,完成注册。
服务端处理 Watcher 实现
- 服务端接收 Watcher 并存储
接收到客户端请求,处理请求判断是否需要注册 Watcher,需要的话将数据节点的节点路径和 ServerCnxn(ServerCnxn 代表一个客户端和服务端的连接,实现了 Watcher 的 process 接口,此时可以看成一个 Watcher 对象)存储在WatcherManager 的 WatchTable 和 watch2Paths 中去。
2. Watcher 触发
以服务端接收到 setData() 事务请求触发 NodeDataChanged 事件为例
- 封装 WatchedEvent
将通知状态(SyncConnected)、事件类型(NodeDataChanged)以及节点路径封装成一个 WatchedEvent 对象 - 查询 Watcher
从 WatchTable 中根据节点路径查找 Watcher - 没找到
说明没有客户端在该数据节点上注册过 Watcher - 找到
提取并从 WatchTable 和 Watch2Paths 中删除对应 Watcher(从这里可以看出 Watcher 在服务端是一次性的,触发一次就失效了) - 调用 process 方法来触发 Watcher
这里 process 主要就是通过 ServerCnxn 对应的 TCP 连接发送 Watcher 事件通知。
客户端回调 Watcher
客户端 SendThread 线程接收事件通知,交由 EventThread 线程回调 Watcher。
客户端的 Watcher 机制同样是一次性的,一旦被触发后,该 Watcher 就失效了。
ACL 权限控制机制
UGO(User/Group/Others)
目前在 Linux/Unix 文件系统中使用,也是使用最广泛的权限控制方式。是一种粗粒度的文件系统权限控制模式。
ACL(Access Control List)访问控制列表
包括三个方面:
权限模式(Scheme)
- IP:从 IP 地址粒度进行权限控制
- Digest:最常用,用类似于 username:password 的权限标识来进行权限配置,便于区分不同应用来进行权限控制
- World:最开放的权限控制方式,是一种特殊的 digest 模式,只有一个权限标识“world:anyone”
- Super:超级用户
授权对象
授权对象指的是权限赋予的用户或一个指定实体,例如 IP 地址或是机器灯。权限 Permission
- CREATE:数据节点创建权限,允许授权对象在该 Znode 下创建子节点
- DELETE:子节点删除权限,允许授权对象删除该数据节点的子节点
- READ:数据节点的读取权限,允许授权对象访问该数据节点并读取其数据内容或子节点列表等
- WRITE:数据节点更新权限,允许授权对象对该数据节点进行更新操作
- ADMIN:数据节点管理权限,允许授权对象对该数据节点进行 ACL 相关设置操作
Chroot 特性
3.2.0 版本后,添加了 Chroot 特性,该特性允许每个客户端为自己设置一个命名空间。如果一个客户端设置了 Chroot,那么该客户端对服务器的任何操作,都将会被限制在其自己的命名空间下。
通过设置 Chroot,能够将一个客户端应用于 Zookeeper 服务端的一颗子树相对应,在那些多个应用公用一个 Zookeeper 进群的场景下,对实现不同应用间的相互隔离非常有帮助
会话管理
- 分桶策略
将类似的会话放在同一区块中进行管理,以便于 Zookeeper 对会话进行不同区块的隔离处理以及同一区块的统一处理。
*分配原则
每个会话的“下次超时时间点”(ExpirationTime)
*计算公式
1 | ExpirationTime_ = currentTime + sessionTimeout |
服务器角色
Leader
- 事务请求的唯一调度和处理者,保证集群事务处理的顺序性
- 集群内部各服务的调度者
Follower
- 处理客户端的非事务请求,转发事务请求给 Leader 服务器
- 参与事务请求 Proposal 的投票
- 参与 Leader 选举投票
Observer
- 3.0 版本以后引入的一个服务器角色,在不影响集群事务处理能力的基础上提升集群的非事务处理能力
- 处理客户端的非事务请求,转发事务请求给 Leader 服务器
- 不参与任何形式的投票
Zookeeper 下 Server 工作状态
服务器具有四种状态,分别是 LOOKING、FOLLOWING、LEADING、OBSERVING。
- LOOKING:寻 找 Leader 状态。当服务器处于该状态时,它会认为当前集群中没有 Leader,因此需要进入 Leader 选举状态。
- FOLLOWING:跟随者状态。表明当前服务器角色是 Follower。
- LEADING:领导者状态。表明当前服务器角色是 Leader。
- OBSERVING:观察者状态。表明当前服务器角色是 Observer。
数据同步
整个集群完成 Leader 选举之后,Learner(Follower 和 Observer 的统称)回向Leader 服务器进行注册。当 Learner 服务器想 Leader 服务器完成注册后,进入数据同步环节。
数据同步流程:(均以消息传递的方式进行)
- Learner 向 Learder 注册
- 数据同步
- 同步确认
Zookeeper 的数据同步通常分为四类
- 直接差异化同步(DIFF 同步)
- 先回滚再差异化同步(TRUNC+DIFF 同步)
- 仅回滚同步(TRUNC 同步)
- 全量同步(SNAP 同步)
zookeeper 是如何保证事务的顺序一致性的
zookeeper 采用了全局递增的事务 Id 来标识,所有的 proposal(提议)都在被提出的时候加上了 zxid,zxid 实际上是一个 64 位的数字,高 32 位是 epoch( 时期; 纪元; 世; 新时代)用来标识 leader 周期,如果有新的 leader 产生出来,epoch会自增,低 32 位用来递增计数。当新产生 proposal 的时候,会依据数据库的两阶段过程,首先会向其他的 server 发出事务执行请求,如果超过半数的机器都能执行并且能够成功,那么就会开始执行。
分布式集群中为什么会有 Master主节点
分布式环境中,有些业务逻辑只需要集群中的某一台机器进行执行,其他的机器可以共享这个结果,这样可以大大减少重复计算,提高性能,于是就需要进行 leader 选举。
zk 节点宕机如何处理
Zookeeper 本身也是集群,推荐配置不少于 3 个服务器。Zookeeper 自身也要保证当一个节点宕机时,其他节点会继续提供服务。
如果是一个 Follower 宕机,还有 2 台服务器提供访问,因为 Zookeeper 上的数据是有多个副本的,数据并不会丢失;
如果是一个 Leader 宕机,Zookeeper 会选举出新的 Leader。
ZK 集群的机制是只要超过半数的节点正常,集群就能正常提供服务。只有在 ZK节点挂得太多,只剩一半或不到一半节点能工作,集群才失效。
所以,
3 个节点的 cluster 可以挂掉 1 个节点(leader 可以得到 2 票>1.5)
2 个节点的 cluster 就不能挂掉任何 1 个节点了(leader 可以得到 1 票<=1)
zookeeper 负载均衡和 nginx 负载均衡区别
zk 的负载均衡是可以调控,nginx 只是能调权重,其他需要可控的都需要自己写插件;但是 nginx 的吞吐量比 zk 大很多,应该说按业务选择用哪种方式。
Zookeeper 有哪几种几种部署模式
- 单机部署:一台集群上运行;
- 集群部署:多台集群运行;
- 伪集群部署:一台集群启动多个 Zookeeper 实例运行。
集群支持动态添加机器吗
其实就是水平扩容了,Zookeeper 在这方面不太好。两种方式:
全部重启:关闭所有 Zookeeper 服务,修改配置之后启动。不影响之前客户端的会话。
逐个重启:在过半存活即可用的原则下,一台机器重启不影响整个集群对外提供服务。这是比较常用的方式。
3.5 版本开始支持动态扩容。
Zookeeper 对节点的 watch 监听通知为什么不是永久的?
如果服务端变动频繁,而监听的客户端很多情况下,每次变动都要通知到所有的客户端,给网络和服务器造成很大压力。
一般是客户端执行 getData(“/节点 A”,true),如果节点 A 发生了变更或删除,客户端会得到它的 watch 事件,但是在之后节点 A 又发生了变更,而客户端又没有设置 watch 事件,就不再给客户端发送。
在实际应用中,很多情况下,我们的客户端不需要知道服务端的每一次变动,我只要最新的数据即可。
说几个 zookeeper 常用的命令。
常用命令:ls get set create delete 等。
Zookeeper 的典型应用场景
ookeeper 是一个典型的发布/订阅模式的分布式数据管理与协调框架,开发人员可以使用它来进行分布式数据的发布和订阅。
通过对 Zookeeper 中丰富的数据节点进行交叉使用,配合 Watcher 事件通知机制,可以非常方便的构建一系列分布式应用中年都会涉及的核心功能,如:
- 数据发布/订阅
- 负载均衡
- 命名服务
- 分布式协调/通知
- 集群管理
- Master 选举
- 分布式锁
- 分布式队列
Zookeeper 都有哪些功能
- 集群管理:监控节点存活状态、运行请求等;
- 主节点选举:主节点挂掉了之后可以从备用的节点开始新一轮选主,主节点选举说的就是这个选举的过程,使用 Zookeeper 可以协助完成这个过程;
- 分布式锁:Zookeeper 提供两种锁:独占锁、共享锁。独占锁即一次只能有一个线程使用资源,共享锁是读锁共享,读写互斥,即可以有多线线程同时读同一个资源,如果要使用写锁也只能有一个线程使用。Zookeeper 可以对分布式锁进行控制。
- 命名服务:在分布式系统中,通过使用命名服务,客户端应用能够根据指定名字来获取资源或服务的地址,提供者等信息。